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What is the best way to program a supercomputer?
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Our Use Case

Library for abstract algebra operations (e.g. matrix multiplication, 
addition) on very big integers (up to 2^10000)

Big Integer Applications

• Cosmology
• Hash tables
• Random numbers/probability 

simulations
• Exact precision

Type of Work

•Partitioning arrays of big 
integers

•Data parallel work
•Reducing lists in 
uncommon ways



Our Implementations



Performance









Portability



Portability

Python

C++• Simple/drop-in 
changes for GPUs



Portability Challenges

• POWER9 processors

• Unique supercomputer security, architecture

• Julia building and distribution issues

• Dask setup and troubleshooting issues

Julia Build



Programmability



Programmability

Python

• Everyone inside/outside 
CS already knows it

• High-productivity

• Requires outside libraries 
(Dask, sympy, gmpy2)

• Dask requires 
experimentation

C++

• Compiles to efficient C

• Requires CS knowledge 

• Time consuming fine-
tuning

• Race conditions and big 
number stack size issues

Julia

• New, unknown 

• High-productivity

• Python like syntax

• Built-in constructs for 
parallelism, distribution, 
big number handling, 
and more!



Programmability Challenges

• Holding and processing big integers

• Outside libraries vs native structures

• How to schedule “tasks”
. . .

Inefficient Dask
Task Graph



Efficient Dask Task Graph



Code Comparison C++

Julia

Python



Useful and Fun Julia Constructs

• Dynamic, high-level syntax

• JIT compilation
• Optional typing, type inference
• Simple core, easy to learn, free and open-source

• Function closures 
• C and Fortran calling

• Metaprogramming
• Array broadcasting
• Built-in parallelism, distributed computing
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Julia Example



Summary

Python C++ Julia
Performance Overhead causes ~10x 

slow down
Excellent Comparable to C++

Scalability Good, Variable on 
different operations

Excellent, Requires 
fine-tuning

Excellent, 
Unpredictable 

garbage collector
Portability One-line scheduler 

conversion
One-line, Requires 
MPI for distribution

Simple, Distributed 
memory requires code 

changes
Runs on Summit Mostly Yes Yes, with comprises

Programmability Excellent More complicated 
for non-CS people

Straightforward, but 
new



Conclusion

• First parallel and fastest implementation

• First to incorporate both theoretical improvements

• Implementations available on github.com/jkwoods

• Python is workable

• C++ is classic

• Julia is very cool and overlooked

https://github.com/jkwoods

